Our Sources
Text Sources
[1] Landau, Elizabeth. “Why Pancreatic Cancer Is so Deadly.” CNN, Cable News Network, 9 Nov. 2020, www.cnn.com/2020/11/08/health/pancreatic-cancer-explainer-trebek-trnd/index.html.
[2] “Immunotherapy for Pancreatic Cancer.” Edited by O'Hara Mark, Cancer Research Institute, www.cancerresearch.org/immunotherapy/cancer-types/pancreatic-cancer.
[3] “Pancreatic Cancer Facts.” Hirshberg Foundation for Pancreatic Cancer Research, 28 Jan. 2021, pancreatic.org/pancreatic-cancer/pancreatic-cancer-facts/.
[4] J. Ferlay, C. Partensky & F. Bray (2016) More deaths from pancreatic cancer than breast cancer in the EU by 2017,Acta Oncologica, 55:9-10, 1158-1160, DOI: 10.1080/0284186X.2016.1197419 <https://www.tandfonline.com/doi/full/10.1080/0284186X.2016.1197419>
[5] Jim Stallard Tuesday, November 8. “Why Is Pancreatic Cancer So Hard to Treat?” Memorial Sloan Kettering Cancer Center, 8 Nov. 2016, www.mskcc.org/news/why-pancreatic-cancer-so-hard-treat.
[6] “Second Cancers Related to Treatment.” American Cancer Society, www.cancer.org/treatment/treatments-and-side-effects/physical-side-effects/second-cancers-in-adults/treatment-risks.html.
[7] “Checkpoint Inhibitors.” Checkpoint Inhibitors | Types of Immunotherapy | Cancer Research UK, 27 Jan. 2021, www.cancerresearchuk.org/about-cancer/cancer-in-general/treatment/immunotherapy/types/checkpoint-inhibitors.
[8] Wang, Xiaodong, et al. “Tumor Cell-Intrinsic PD-1 Receptor Is a Tumor Suppressor and Mediates
Resistance to PD-1 Blockade Therapy.” PNAS, National Academy of Sciences, 24 Mar. 2020,<https://www.pnas.org/content/117/12/6640#:~:text=The%20programmed%20cell%20death%201,in%20some%20types%20of%20cancers.>
[9] Forster, Victoria. “Resistance to Immune Checkpoint Inhibition in Pancreatic Cancer.” Cancer Therapy Advisor, 26 Dec. 2019, www.cancertherapyadvisor.com/home/cancer-topics/general-oncology/resistance-to-immune-checkpoint-inhibition-in-pancreatic-cancer/.
[10] Chang, Thomas Ming Swi. “50th Anniversary of Artificial Cells: Their Role in Biotechnology, Nanomedicine, Regenerative Medicine, Blood Substitutes, Bioencapsulation, Cell/Stem Cell Therapy and Nanorobotics.” Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, U.S. National Library of Medicine, 2007, www.ncbi.nlm.nih.gov/pmc/articles/PMC3518485/.
[11] Bozzuto, Giuseppina, and Agnese Molinari. “Liposomes as Nanomedical Devices.” International Journal of Nanomedicine, Dove Medical Press, 2 Feb. 2015, www.ncbi.nlm.nih.gov/pmc/articles/PMC4324542/.
[12] Bulbake, Upendra, and Doppalaupdi, Sindhu, and Kommieni, Nagavendra and, Khan, Wahid. “Liposomal Formulations in Clinical Use: An Updated Review.” Pharmaceutics, MDPI, 27 Mar. 2017, www.ncbi.nlm.nih.gov/pmc/articles/PMC5489929/.
[13] EA. Forssen, ZA. Tokes, et al. “A Comparison of Liposomal Formulations of Doxorubicin with Drug Administered in Free Form.” Drug Safety, Springer International Publishing, 1 Jan. 1979, link.springer.com/article/10.2165/00002018-200124120-00004.
[14] Torchilin, V. P. (2005). Recent advances with liposomes as pharmaceutical carriers. Nature Reviews Drug Discovery, 4(2), 145–160. doi:10.1038/nrd1632 <https://www.nature.com/articles/nrd1632>
[15] Fanciullino, Raphaelle, et al. “COVID-19 Vaccine Race: Watch Your Step for Cancer Patients.” Nature News, Nature Publishing Group, 7 Dec. 2020, <www.nature.com/articles/s41416-020-01219-3.>
[16] “Pancreatic Cancer - Statistics.” Cancer.Net, 16 July 2020, www.cancer.net/cancer-types/pancreatic-cancer/statistics#:~:text=This%20year%2C%20an%20estimated%2057%2C600,disease%20will%20occur%20this%20year.
[17] Qu, C. F., Li, Y., Song, Y. J., Rizvi, S. M. A., Raja, C., Zhang, D., … Allen, B. J. (2004). MUC1 expression in primary and metastatic pancreatic cancer cells for in vitro treatment by 213Bi-C595 radioimmunoconjugate. British Journal of Cancer, 91(12), 2086–2093.doi:10.1038/sj.bjc.6602232 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2409789/>
​
[18] Nath, S., & Mukherjee, P. (2014). MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends in Molecular Medicine, 20(6), 332–342.doi:10.1016/j.molmed.2014.02.007 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5500204/>
​
[19] Eloy, J. O., Petrilli, R., Trevizan, L. N. F., & Chorilli, M. (2017). Immunoliposomes: A review on functionalization strategies and targets for drug delivery. Colloids and Surfaces B: Biointerfaces, 159, 454–467. doi:10.1016/j.colsurfb.2017.07.085 <https://pubmed.ncbi.nlm.nih.gov/28837895/>
[20] Topham, N. J., & Hewitt, E. W. (2009). Natural killer cell cytotoxicity: how do they pull the trigger? Immunology, 128(1), 7–15.doi:10.1111/j.1365-2567.2009.03123.x <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2747134/#b15>
​
[21] Stow, J. L., Manderson, A. P., & Murray, R. Z. (2006). SNAREing immunity: the role of SNAREs in the immune system. Nature Reviews Immunology, 6(12), 919–929.doi:10.1038/nri1980 <https://www.nature.com/articles/nri1980>
​
[22] “Resources.” Perforin/Granzyme Apoptosis Pathway - Creative Diagnostics, www.creative-diagnostics.com/perforin-granzyme-apoptosis-pathway.htm#:~:text=Perforin%20and%20Granzyme&text=Granzyme%20is%20necessary%20for%20triggering,being%20appropriately%20delivered%20by%20perforin.
​
[23] Yadav, Durgavati, et al. “Liposomes for Drug Delivery.” OMICS International, OMICS International, 6 Nov. 2017, www.omicsonline.org/open-access/liposomes-for-drug-delivery-2155-952X276-97370.html.
​
[24] Bozzuto, G., & Molinari, A. (2015). Liposomes as nanomedical devices. International Journal of Nanomedicine, 975.doi:10.2147/ijn.s68861 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4324542/>
​
[25] Shi, Yang, et al. “The EPR Effect and beyond: Strategies to Improve Tumor Targeting and Cancer Nanomedicine Treatment Efficacy.” Theranostics, Ivyspring International Publisher, 25 June 2020, www.ncbi.nlm.nih.gov/pmc/articles/PMC7359085/.
​
[26] Rao, Jianghong, et al. “Fluorescence Imaging in Vivo: Recent Advances.” Current Opinion in Biotechnology, U.S. National Library of Medicine, pubmed.ncbi.nlm.nih.gov/17234399/.
[27] Romberg, B., Oussoren, C., Snel, C. J., Hennink, W. E., & Storm, G. (2007). Effect of Liposome Characteristics and Dose on the Pharmacokinetics of Liposomes Coated with Poly(amino acid)s. Pharmaceutical Research, 24(12), 2394–2401.doi:10.1007/s11095-007-9393-2 <https://link.springer.com/article/10.1007/s11095-007-9393-2>
[28] Sercombe, Lisa, et al. “Advances and Challenges of Liposome Assisted Drug Delivery.” Frontiers, Frontiers, 16 Nov. 2015, www.frontiersin.org/articles/10.3389/fphar.2015.00286/full.
[29] “CAR T-Cell Therapy and Its Side Effects.” American Cancer Society, www.cancer.org/treatment/treatments-and-side-effects/treatment-types/immunotherapy/car-t-cell1.html.
[30] Beer, Gabriella. “Why Doesn't the Immune System Attack Cancer Cells? Science Surgery:” Cancer Research UK - Science Blog, 1 Mar. 2019, scienceblog.cancerresearchuk.org/2019/02/28/science-surgery-why-doesnt-the-immune-system-attack-cancer-cells/.
[31] Li, S., Jiang, Q., Liu, S., Zhang, Y., Tian, Y., Song, C., … Zhao, Y. (2018). A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nature Biotechnology, 36(3), 258–264. doi:10.1038/nbt.4071 <https://www.nature.com/articles/nbt.4071>
​
[32] “DNA Aptamers or RNA Aptamers?” Base Pair Biotechnologies, 19 Jan. 2020, www.basepairbio.com/dna-aptamers-rna-aptamers/.
​
[33] Sato, Y., Hiratsuka, Y., Kawamata, I., Murata, S., & Nomura, S. M. (2017). Micrometer-sized molecular robot changes its shape in response to signal molecules. Science Robotics, 2(4), eaal3735.doi:10.1126/scirobotics.aal3735 <https://robotics.sciencemag.org/content/2/4/eaal3735>
[34] Rawla, Prashanth, et al. “Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors.” World Journal of Oncology, Elmer Press, Feb. 2019, www.ncbi.nlm.nih.gov/pmc/articles/PMC6396775/.
​
[35] Noble, G. T., Stefanick, J. F., Ashley, J. D., Kiziltepe, T., & Bilgicer, B. (2014). Ligand-targeted liposome design: challenges and fundamental considerations. Trends in Biotechnology, 32(1), 32–45. doi:10.1016/j.tibtech.2013.09.007 <https://pubmed.ncbi.nlm.nih.gov/24210498/>
​
[36] “T Cell Macrophage Interactions.” T Cells and Macrophages, www.bristol.ac.uk/cellmolmed/air/ourresearch/project.tcell_mp.html.
​
[37] Torchilin, V. P. (2005). Recent advances with liposomes as pharmaceutical carriers. Nature Reviews Drug Discovery, 4(2), 145–160. doi:10.1038/nrd1632 <https://www.nature.com/articles/nrd1632>