top of page

Image Citations

Ballard, Daein (2006). MarsTransition.jpg. Wikimedia Commons. https://en.wikipedia.org/wiki/File:MarsTransition.jpg

Coates, J., Achenbach, L. Microbial perchlorate reduction: rocket-fuelled metabolism. Nat Rev Microbiol, 2, 569–580 (2004). https://doi.org/10.1038/nrmicro926

Francis, Ric (n.d.). Perchlorate contamination sign. The Associated Press. https://www.seattletimes.com/business/epa-upholds-trump-era-decision-not-to-regulate-contaminant/

(n.d.) Fungi and bacteria in petri dish, F027/3167. Sciencephotolibrary. https://www.sciencephoto.com/media/1064299/view/fungi-and-bacteria-in-petri-dish 

Harth, Richard (2020). Microbial remedies target chemical threats in the environment. Arizona State University News. https://news.asu.edu/20201117-microbial-remedies-target-chemical-threats-environment

Hoson, T. (2003). How do plants grow in microgravity?  Japanese Aerospace Exploration Agency. https://global.jaxa.jp/article/special/kibo/takahashi_e.html 

Kichigin (n.d.). mycelium. Shutterstock. https://www.shutterstock.com/image-photo/mycelium-155214428

MacDonald, J.G., Rodriguez, K., Quirk, S. (2020) An Oxygen Delivery Polymer Enhances Seed Germination in a Martian-like Environment. Astrobiology. 20(7) pg. 846-863. http://doi.org/10.1089/ast.2019.2056

Manohar, C.S., Boekhout, T., Müller, W.H., Stoeck, T. (2014). Tritirachium candoliense sp. nov., a novel basidiomycetous fungus isolated from the anoxic zone of the Arabian Sea. Fungal Biology, 118(2), 139-149. https://doi.org/10.1016/j.funbio.2013.10.010

 

(n.d.) Mixing Peat Moss With Soil. Eising.ca. https://eising.ca/mixing-peat-moss-with-soil/

 

Moore, Mark (2020). The Benefits of Crop Rotation and Diversity. U.S. Farmers & Ranchers. https://usfarmersandranchers.org/stories/sustainable-food-production/the-benefits-of-crop-rotation-and-diversity/

 

NASA (2020). Could Future Homes on the Moon and Mars Be Made of Fungi? NASA. https://www.nasa.gov/feature/ames/myco-architecture

 

NASA (n.d.). Mars Facts. NASA Science Mars Exploration. https://mars.nasa.gov/all-about-mars/facts/mars-day/

 

NASA (2000). Viking 2 Image of Mars Utopian Plain. NASA InSight Mission. https://mars.nasa.gov/resources/7318/viking-2-image-of-mars-utopian-plain/?site=insight

Oatman-Stanford, Hunter (2013). A Filthy History: When New Yorkers Lived Knee-Deep in Trash. Collector's Weekly. https://www.collectorsweekly.com/articles/when-new-yorkers-lived-knee-deep-in-trash/

Oze C, Beisel J, Dabsys E, Dall J, North G, Scott A, Lopez AM, Holmes R, Fendorf S. Perchlorate and Agriculture on Mars (2021). Soil Systems, 5(3):37. https://doi.org/10.3390/soilsystems5030037

Rajan, Sahana (2016). Bioremediation: Recovery of Contaminated Sites With Microbes. EcoIdeaz. https://www.ecoideaz.com/innovative-green-ideas/bioremediation-recovery-of-contaminated-sites-with-microbes

 

(n.d.) Salt on wood background. Shutterstock, contributed by Ratchata898. https://www.shutterstock.com/image-photo/salt-on-wood-background-good-your-424417582 

(n.d.). Soil Testing for Construction: What You Need to Know. Cutting Technologies. https://www.cuttingtechnologies.com/soil-testing-for-construction/

SpaceX. (2016, September 27). SpaceX Interplanetary Transport System [Video]. YouTube. https://www.youtube.com/watch?v=0qo78R_yYFA

SpaceX (2017, September 9). Supporting the creation of a permanent, self-sustaining human presence on Mars. http://spacex.com/mars [Video attached] [Tweet]. Twitter. https://twitter.com/SpaceX/status/913634039545847808

(n.d.). The Martian Garden. The Martian Garden. https://www.themartiangarden.com/

Theodorakis, C., Rinchard, J., Carr, J. & Park, J-W. (2006). Thyroid Endocrine Disruption in Stonerollers and Cricket Frogs from Perchlorate-Contaminated Streams in East-Central Texas. Ecotoxicology  15(1): 31-50 DOI: 10.1007/s10646-005-0040-6. 

Xiong B, Kleinsteuber S, Sträuber H, Dusny C, Harms H, Wick L (2022). Impact of Fungal Hyphae on Growth and Dispersal of Obligate Anaerobic Bacteria in Aerated Habitats. mBio. https://journals.asm.org/doi/abs/10.1128/mbio.00769-22

Paper Citations

 

[1] Lester, C., Mann, E., Murugan, S., Patil, A., Penny, L., Syquia, J., Veluvali, A., Weininger, G. (n.d.). Myco for Mars. Team Stanford-Brown RISD. https://2018.igem.org/Team:Stanford-Brown-RISD 

 

[2] Eglin, A., Guinan, E. (2020). The Mars Gardens: a comparison of the viability of plants grown in Martian simulant regolith and in a hydroponics system. American Astronomical Society meeting #235, id. 212.01. Bulletin of the American Astronomical Society, 52(1) https://ui.adsabs.harvard.edu/abs/2020AAS...23521201E/abstract 

 

[3] Clark, B.C., Baird, A.K., Weldon, R.J., Tsusaki, D.M., Schnabel, L., Candelaria,M.P. (1982). Chemical composition of Martian fines. Journal of Geophysical Research: Solid Earth, 87(B12):10059-10067

 

[4] Duri, L.G., Caporale, A.G., Rouphael, Y., Vingiani, S., Palladino, M., De Pascale, S., Adamo, P. (2022). The Potential for Lunar and Martian Regolith Simulants to Sustain Plant Growth: A Multidisciplinary Overview. Front. Astron. Space Sci., 8. https://doi.org/10.3389/fspas.2021.747821

 

[5] Oze, C., Beisel, J., Dabsys, E., Dall, J., North, G., Scott, A., Lopez, A.M., Holmes, R., Fendorf, S. (2021). Perchlorate and Agriculture on Mars. Soil Systems, 5(3) 37. https://doi.org/10.3390/soilsystems5030037

 

[6] Harris, F., Dobbs, J., Atkins, D., Ippolito, J.A., Stewart, J.E. (2021). Soil fertility interactions with Sinorhizobium-legume symbiosis in a simulated Martian regolith; effects on nitrogen content and plant health. PLoS ONE 16(9): e0257053. https://doi.org/10.1371/journal.pone.0257053

 

[7] Wolff, J. (1998). Perchlorate and the thyroid gland. Pharmacol Rev. 50(1):89-105 https://pubmed.ncbi.nlm.nih.gov/9549759/

 

[8] A. Eichler, N. Hadland, D. Pickett, D. Masaitis, D. Handy, A. Perez, D. Batcheldor, B. Wheeler, A. Palmer. (2021). Challenging the agricultural viability of martian regolith simulants. Icarus, 354. 114022, ISSN 0019-1035, https://doi.org/10.1016/j.icarus.2020.114022.

 

[9] (2018). Remedial Technology Fact Sheet – Activated Carbon Based Technology for In Situ Remediation. United States Environmental Protection Agency. EPA 542-F-18-001. https://www.epa.gov/sites/default/files/2018-04/documents/100001159.pdf 

 

[10] Muthusaravanan, S., Sivarajasekar, N., Vivek, J. S., Paramasivan, T., Naushad, Mu., Prakashmaran, J., Gayathri, V., Al‑Duaij, O.K. (2018). Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environmental Chemistry Letters. https://doi.org/10.1007/s10311-018-0762-3 

 

[11] Nozawa-Inoue, M., Scow, K. M., & Rolston, D. E. (2005). Reduction of perchlorate and nitrate by microbial communities in vadose soil. Applied and environmental microbiology. https://doi.org/10.1128/AEM.71.7.3928-3934.2005

 

[12] Bardiya, N. & Bae, J.H. (2011). Dissimilatory perchlorate reduction: A review. Microbiological Research, 166(4): 237-254 https://doi.org/10.1016/j.micres.2010.11.005 

 

[13] Lindqvist, M.H., Johansson, N., Nilsson, T., Rova, M. (2012). Expression of Chlorite Dismutase and Chlorate Reductase in the Presence of Oxygen and/or Chlorate as the Terminal Electron Acceptor in Ideonella dechloratans. Applied and Environmental Microbiology, 78(12) https://doi.org/10.1128/AEM.07303-11

 

[14] Kotlarz, N., Upadhyaya, G., Togna, P., Raskin, L. (2016). Evaluation of electron donors for biological perchlorate removal highlights the importance of diverse perchlorate-reducing populations. Environ. Sci.: Water Res. Technol. 2 pg.1049-1063 DOI: 10.1039/C6EW00181E

 

[15] R. Volger, M.J. Timmer, J. Schleppi, C.N. Haenggi, A.S. Meyer, C. Picioreanu, A. Cowley, B.A.E. Lehner. (2020). Theoretical bioreactor design to perform microbial mining activities on Mars. Acta Astronautica, 170. pg. 354-64 ISSN 0094-5765 https://doi.org/10.1016/j.actaastro.2020.01.036

 

[16] NASA Editors (2015). A Chronology of Mars Exploration. National Aeronautics and Space Administration. https://history.nasa.gov/marschro.htm 

 

[17] NASA Editors (2014). NIAC Phase I Grant “Mars Ecopoiesis Testbed” NNX14AM97G Final Progress Report. National Aeronautics and Space Administration. https://www.nasa.gov/sites/default/files/atoms/files/2014_phase_i_eugene_boland_mars_ecopoiesis_testbed.pdf

 

[18] (n.d.). Soil Contamination. Environmental Science: In Context. Retrieved January 31, 2023 from Encyclopedia.com: https://www.encyclopedia.com/environment/energy-government-and-defense-magazines/soil-contamination 

 

[19] Wang, O., & Coates, J. D. (2017). Biotechnological Applications of Microbial (Per)chlorate Reduction. Microorganisms, 5(4): 76. https://doi.org/10.3390/microorganisms5040076

 

[20] MacDonald, J.G., Rodriguez, K., Quirk, S. (2020) An Oxygen Delivery Polymer Enhances Seed Germination in a Martian-like Environment. Astrobiology. 20(7): 846-863. http://doi.org/10.1089/ast.2019.2056

 

[21] Berni, R., Leclercq, C.C., Roux, P., Hausman, J.F., Renaut, J., Guerriero, G. (2023). A molecular study of Italian ryegrass grown on Martian regolith simulant. Science of the Total Environment, 854. 158774. https://doi.org/10.1016/j.scitotenv.2022.158774

 

[22] Caporale, A.G., Paradiso, R., Liuzzi, G., Arouna, N., De Pascale, S., Adamo, P. (2023). Can Peat Amendment of Mars Regolith Simulant Allow Soybean Cultivation in Mars? Plants, 12(1):64. https://doi.org/10.3390/plants12010064 

 

 [23] (n.d.) Fungi are fascinating. https://ucanr.edu/sites/Shasta_College_Master_Gardener/files/169405.pdf 

 

[24] Furuno, S., Päzolt, K., Rabe, C., Neu, T.R., Harms, H., Wick, L. Y. (2010). Fungal mycelia allow chemotactic dispersal of polycyclic aromatic hydrocarbon-degrading bacteria in water-unsaturated systems. Environmental Microbiology, 12(6): 1391-1398. https://doi.org/10.1111/j.1462-2920.2009.02022.x 

 

[25] Vandermeulen, M. (2020). Fungi learn how to cope with drought, but at a cost. Massive Science. https://massivesci.com/articles/fungi-climate-change-drought-stress-priming-memory-water/ 

 

[26] Harms, H., Schlosser, D. & Wick, L. (2011). Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9, pg. 177–192. https://doi.org/10.1038/nrmicro2519 

 

[27] Sun, Y., Gustavson, R. L., Ali, N., Weber, K. A., Westphal, L. L., & Coates, J. D. (2009). Behavioral response of dissimilatory perchlorate-reducing bacteria to different electron acceptors. Applied microbiology and biotechnology, 84(5): 955–963. https://doi.org/10.1007/s00

 

[28] Worrich, A., Stryhanyuk, H., Musat, N. et al. (2017). Mycelium-mediated transfer of water and nutrients stimulates bacterial activity in dry and oligotrophic environments. Nat Commun 8, 15472. https://doi.org/10.1038/ncomms15472 

 

[29] Warren, J., Benscoter, B., Stover, D. (2022). Roots and Fungal Hyphae Impact Soil Water Availability. Environmental System Science Program. US Department of Energy. https://ess.science.energy.gov/highlight/roots-and-fungal-hyphae-impact-soil-water-availability/ 

 

[30] Shevtsov, J. (2021). Making Soil for Space Habitats by Seeding Asteroids with Fungi. NASA. https://www.nasa.gov/directorates/spacetech/niac/2021_Phase_I/Making_Soil_for_Space_Habitats/ 

 

[31] Luo, Y.H., Chen, R., Wen, L.L., Meng, F., Zhang, Y., Lai, C.Y., Rittmann, B.E., Zhao, H.P., Zheng P. (2015). Complete Perchlorate Reduction Using Methane as the Sole Electron Donor and Carbon Source. Environmental Science & Technology. 49 (4): 2341-2349 DOI: 10.1021/es504990m 

 

[32] K. F. Bywaters and R. C. Quinn. (2016). Perchlorate reducing bacteria: evaluating the potential for growth utilizing nutrient sources identified on Mars. 47th Lunar and Planetary Science Conference. https://www.hou.usra.edu/meetings/lpsc2016/pdf/2946.pdf

 

[33] Xiong, B. J., Kleinsteuber, S., Sträuber, H., Dusny, C., Harms, H., & Wick, L. Y. (2022). Impact of Fungal Hyphae on Growth and Dispersal of Obligate Anaerobic Bacteria in Aerated Habitats. mBio, 13(3), e0076922. https://doi.org/10.1128/mbio.00769-22 

 

[34] Fricker, M. D., Lee, J. A., Bebber, D. P., Tlalka, M., Hynes, J., Darrah, P. R., Watkinson, S. C., & Boddy, L. (2008). Imaging complex nutrient dynamics in mycelial networks. Journal of microscopy, 231(2): 317–331. https://doi.org/10.1111/j.1365-2818.2008.02043.x

 

[35] Joseph-Horne, T., Hollomon, D. W., & Wood, P. M. (2001). Fungal respiration: a fusion of standard and alternative components. Biochimica et biophysica acta, 1504(2-3): 179–195. https://doi.org/10.1016/s0005-2728(00)00251-6

 

[36] Drake, H., Ivarsson, M., Heim, C. et al. Fossilized anaerobic and possibly methanogenesis-fueling fungi identified deep within the Siljan impact structure, Sweden. Commun Earth Environ 2, 34 (2021). https://doi.org/10.1038/s43247-021-00107-9

 

[37] Manohar, C.S., Boekhout, T., Müller, W.H., Stoeck, T. (2014). Tritirachium candoliense sp. nov., a novel basidiomycetous fungus isolated from the anoxic zone of the Arabian Sea. Fungal Biology, 118(2): 139-149. https://doi.org/10.1016/j.funbio.2013.10.010 

 

[38] Singh, P., Wang, X., Leng, K., Wang. G. (2012). Marine Fungi: and fungal-like organisms. Walter de Gruyter. pg. 384-401. https://books.google.com/books?hl=en&lr=&id=RcF97cHppPsC&oi=fnd&pg=PA383&ots=YyauvgfcDa&sig=gcHFhNUhYF8ieCu10WDIcXM5QMg#v=onepage&q&f=false 

 

[39] Zhou, Z., Takaya, N., Nakamura, A., Yamaguchi, M., Takeo, K., Shoun, H. (2002). Ammonia Fermentation, a Novel Anoxic Metabolism of Nitrate by Fungi. Journal of Biological Chemistry, 277(3), pg. 1892-1896. DOI:https://doi.org/10.1074/jbc.M109096200 

 

[40] Heinz, J., Krahn, T., & Schulze-Makuch, D. (2020). A New Record for Microbial Perchlorate Tolerance: Fungal Growth in NaClO4 Brines and its Implications for Putative Life on Mars. Life (Basel, Switzerland), 10(5), 53. https://doi.org/10.3390/life10050053 

 

[41] Caporale, A.G., Amato, M., Duri, L.G., Bochicchio, R., De Pascale, S., Simeone, G.D.R., Palladino, M., Pannico, A., Rao, M.A., Rouphael, Y., Adamo, P. (2022). Can Lunar and Martian Soils Support Food Plant Production? Effects of Horse/Swine Monogastric Manure Fertilisation on Regolith Simulants Enzymatic Activity, Nutrient Bioavailability, and Lettuce Growth. Plants, 11(23), 3345; https://doi.org/10.3390/plants11233345

 

[42] Geer, K. (2019, February 25). Growing tepary beans: The most heat-tolerant crop in the world. Countryside. https://www.iamcountryside.com/growing/growing-tepary-beans/

 

[43] Sunilkumar, U., LAL, S. (2021). Perchlorate reducing bacteria and their insight towards astrobiology. ARIBAS, Affiliated to Sardar Patel University, New Vallabh Vidyanagar, Anand - 388121, IJRAR, 8(1). https://www.researchgate.net/profile/Utsav-2/publication/348693166_PERCHLORATE_REDUCING_BACTERIA_AND_THEIR_INSIGHT_TOWARDS_ASTROBIOLOGY/links/600babfe299bf14088b4c67d/PERCHLORATE-REDUCING-BACTERIA-AND-THEIR-INSIGHT-TOWARDS-ASTROBIOLOGY.pdf 

 

[44] Brandt, A., De Vera, J., Onofri, S., & Ott, S. (2015). Viability of the lichen Xanthoria elegans and its symbionts after 18 months of space exposure and simulated Mars conditions on the ISS. International Journal of Astrobiology, 14(3), 411-425. doi:10.1017/S1473550414000214

 

[45] Sancho, L., de la Torre, R., Horneck, G., Ascaso, C., de los Rios, A., Pintado, A., Wierzchos, J., & Schuster, M. (2007). Lichens Survive in Space: Results from the 2005 LICHENS Experiment. Astrobiology, 7(3):443-454. https://doi.org/10.1089/ast.2006.0046
 

[46] Ma, Y., Oliveira, R. S., Freitas, H., & Zhang, C. (2016). Biochemical and Molecular Mechanisms of Plant-Microbe-Metal Interactions: Relevance for Phytoremediation. Frontiers in plant science, 7, 918. https://doi.org/10.3389/fpls.2016.00918

 

Belnap, J. (2001). Factors Influencing Nitrogen Fixation and Nitrogen Release in Biological Soil Crusts. In: Belnap, J., Lange, O.L. (eds) Biological Soil Crusts: Structure, Function, and Management. Ecological Studies, 150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56475-8_19 

 

Duri, L.G., El-Nakhel, C., Caporale, A.G., Ciriello, M., Graziani, G., Pannico, A., Palladino, M., Ritieni, A., De Pascale, S., Vingiani, S., Adamo, P., Rouphael, Y. (2020). Mars Regolith Simulant Ameliorated by Compost as in situ Cultivation Substrate Improves Lettuce Growth and Nutritional Aspects. Plants, 9(5). 628. https://doi.org/10.3390/plants9050628 

 

Fackrell, L.E., Schroeder, P.A. (n.d.) Growing plants on Mars – potential and limitations of Martian regolith for in-situ resource utilization. University of Georgia, Department of Geology, Franklin College of Arts and Sciences.  https://www.hou.usra.edu/meetings/ninthmars2019/eposter/6045.pdf  

 

He, H., Guikui, C., Li, H., Gao, H. (2013). Effects of perchlorate on growth of four wetland plants and its accumulation in plant tissues. Environmental Science and Pollution Research 20(10). DOI:10.1007/s11356-013-1744-4  

 

Hubric, C., Afruni, F., Kozan, W., Edmonson, F., Meyer, A., Adepoju, L., Al-Najim, J., Laupstaud, M., Ross, K., DiGiovanni, A., Ferrucho, V. (n.d.). Incorporating Edible Decomposers into Sustainable Bioregenerative Life Support Systems for a Martian Colony. Florida Institute of Technology, Florida Tech Fungi’s II (Team 9552). https://plantthemoon.com/wp-content/uploads/2022/05/Florida-Tech-Fungis-II.pdf 

 

Kasiviswanathan, P., Swanner, E.D., Halverson, L.J., Vijayapalani, P. (2022). Farming on Mars: Treatment of basaltic regolith soil and briny water simulants sustains plant growth. PLoS ONE 17(8): e0272209. https://doi.org/10.1371/journal.pone.0272209 

 

Li, D., Li, B., Gao, H. et al. (2022). Removal of perchlorate by a lab-scale constructed wetland using achira (Canna indica L.). Wetlands Ecol Manage, 30, pg. 35–45. https://doi.org/10.1007/s11273-021-09827-3 

 

Misra, G., Smith, W., Garner, M., Loureiro, R. (2021). Potential Biological Remediation Strategies for Removing Perchlorate from Martian Regolith. New Space, 9(4): 217-227. http://doi.org/10.1089/space.2020.0055  

 

Nerdery. (2022). Agriculture 101: How to grow plants on Mars. The Daily Dug. https://dug.com/agriculture-101-how-to-grow-plants-on-mars/  

 

Onofri, S., de Vera, J.P., Zucconi, L., Selbmann, L., Scalzi, G., Venkateswaran, K.J., Rabbow, E., de la Torre, R., Horneck, G. (2015). Survival of Antarctic Cryptoendolithic Fungi in Simulated Martian Conditions On Board the International Space Station. Astrobiology, 15(12). https://doi.org/10.1089/ast.2015.1324 

 

Robitzski, D. (2021). Scientists show that algae could grow using only Mars resources. The Byte. https://futurism.com/the-byte/algae-grow-mars-resources  

 

Sia, J.S. (2020). ISRU Part IV: How to Grow Food on Mars. Mars society of Canada. https://www.marssociety.ca/2020/09/28/isru-part-iv-how-to-grow-food-on-mars/  

 

Verseux, C., Heinicke, C., Ramalho, T.P., Determann, J., Duckhorn, M., Smagin M., Avila, M. (2021). A Low-Pressure, N2/CO2 Atmosphere Is Suitable for Cyanobacterium-Based Life-Support Systems on Mars. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.611798  

 

Wamelink, G., Frissel, J., Krijnen, W. & Verwoert, M. (2019). Crop growth and viability of seeds on Mars and Moon soil simulants. Open Agriculture, 4(1), 509-516. https://doi.org/10.1515/opag-2019-0051 

 

Wang, B., Ye, T., Li, X., Bian, P., Liu, Y., Wang, G. (2021).  Survival of desert algae Chlorella exposed to Mars-like near space environment. Life Sciences in Space Research, 29, pg. 22-29, ISSN 2214-5524, https://doi.org/10.1016/j.lssr.2021.02.003.  

 

Wang, Y., Narayanan, M., Shi, X., Chen, X., Li, Z., Natarajan, D., & Ma, Y. (2022). Plant growth-promoting bacteria in metal-contaminated soil: Current perspectives on remediation mechanisms. Frontiers in microbiology, 13, 966226. https://doi.org/10.3389/fmicb.2022.966226 


Zhang, Y., Kastman, E.K., Guasto, J.S. et al. (2018). Fungal networks shape dynamics of bacterial dispersal and community assembly in cheese rind microbiomes. Nat Commun 9, 336. https://doi.org/10.1038/s41467-017-02522-z

bottom of page